
 International Journal of Engineering Research & Management Technology

 (Peer-Reviewed, Open Access, Fully Refereed International Journal) ISSN: 2348-4039

 Volume 11, Issue-3 May-June- 2024 Impact Factor: 7.09

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 109

ANALYSIS OF SOFTWARE FAULT PREDICTION USING

MACHINE LEARNING TECHNIQUES

Dr. Vikas Jain,

Assistant Professor, SCRIET-DCA,

Ch. Charan Singh University, Meerut, Uttar Pradesh, India

ABSTRACT

Within the context of the modern era of software development, it is of the utmost importance to guarantee

the dependability and quality of software systems. In this particular field, one of the most significant issues

is the prediction and identification of software faults, which can have a considerable impact on both the

performance of software and the level of pleasure experienced by users. Within the scope of this research

project, the use of machine learning techniques to the prediction of software errors is investigated with the

objective of improving the accuracy and efficiency of fault detection procedures. In order to construct

predictive models that are based on past software defect data, we studied a number of different machine

learning methods. These algorithms included Decision Trees, Random Forest, Support Vector Machines

(SVM), and Neural Networks. Multiple software metrics, such as code complexity, lines of code, and

historical fault data, are included in the dataset that was utilized for this analysis. These metrics serve as

predictors for prospective software flaws. The preprocessing of data, the selection of features, the training

of models, and validation are all components of our methodology. The performance of each model was

evaluated using cross-validation techniques, with a particular emphasis placed on metrics like as precision,

recall, F1-score, and area under the receiver operating characteristic (ROC) curve. According to the

findings, machine learning models, and more specifically ensemble approaches such as Random Forest,

provide higher performance when it comes to forecasting software problems in comparison to classic

statistical methods. Furthermore, the research emphasizes the significance of feature selection in terms of

contributing to the enhancement of model correctness and the reduction of computing complexity.

According to the findings, adopting techniques from machine learning into the software development

lifecycle has the potential to dramatically improve failure prediction, which in turn can lead to software

systems that are more dependable and robust. This research provides a platform for future work in this

subject by demonstrating the efficacy of machine learning algorithms in software defect prediction. In

conclusion, this research illustrates both of these things. By incorporating these predictive models, software

developers are able to proactively identify and address potential flaws, which ultimately results in an

improvement in software quality and a reduction in the expenses associated with maintenance.

Keywords: software, machine learning, techniques

Introduction

Various industries, including healthcare, finance, transportation, and communication, have all been

impacted by the proliferation of software systems, which have become an indispensable component of

contemporary life. It is becoming increasingly difficult to guarantee the dependability and quality of these

systems as their complexity and scale continue to increase. program faults, also known as defects or bugs

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 110

in the program, have the potential to result in substantial failures, which can result in monetary losses,

breaches of security, and disruptions to operational business operations. Predicting software problems at an

early stage in the development lifecycle is therefore essential for ensuring that software continues to be of

good quality and for lowering the expenses associated with its maintenance. Traditional methods of fault

detection frequently rely on manual code reviews and testing, which are both time-consuming and may not

be able to identify all potential faults in an accurate manner. Machine learning approaches, on the other

hand, provide a viable alternative by automating the process of fault prediction. These strategies make use

of previous data in order to identify trends and generate predictions about future errors. As a result, they

enable proactive identification and resolution of difficulties. In this work, the application of a variety of

machine learning techniques to the prediction of software deficiencies is the primary focus. As part of our

investigation into the construction of prediction models based on software metrics, we investigate the

utilization of Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks. The

purpose of this study is to determine which algorithms are the best appropriate for this purpose and to

evaluate the efficiency of these models in properly forecasting software defects. Multiple software

measures, such as code complexity, lines of code, and historical fault data, are included in the dataset that

was utilized for this investigation into software. The machine learning models take these measurements as

input characteristics and use them to make decisions. We use a methodical approach to the preprocessing of

data, the selection of features, the training of models, and the implementation of validation. The performance

of each model is evaluated through the use of cross-validation procedures, with a particular emphasis placed

on important evaluation metrics such as precision, recall, F1-score, and the area under the receiver operating

characteristic (ROC) curve. It is anticipated that the outcomes of this research will make a contribution to

the existing body of knowledge on software fault prediction and will provide software developers with

insights that have practical applications. Developers are able to increase defect detection, enhance software

reliability, and reduce maintenance efforts when they incorporate predictive models that are based on

machine learning into the software development process. The subsequent sections will consist of a review

of the applicable literature, a description of the technique, a presentation of the experimental results, and a

discussion of the implications of our findings. An overview of the most important contributions and some

recommendations for potential future research areas in the field of software failure prediction through the

application of machine learning techniques are presented as the final section of the study.

Related Work

The prediction of software problems has been the subject of a significant amount of research, and numerous

approaches have been investigated in order to investigate ways to improve the accuracy and efficiency of

fault detection. In the early phases of this research topic, traditional statistical methods such as regression

analysis and Bayesian networks received a significant amount of attention and were utilized extensively.

These methodologies, on the other hand, frequently suffer when confronted with the intricate and nonlinear

interactions that are inherent in software measurements.

Machine learning has developed as a potent technique for software fault prediction in recent years. It offers

the capability to handle massive datasets and identify subtle patterns, making it an ideal tool for software

fault prediction. The efficacy of machine learning algorithms in this field has been proved by a great number

of studies. Menzies et al. (2007), for example, brought attention to the fact that machine learning models, in

particular Decision Trees and Naive Bayes, have the capacity to accurately anticipate software problems. In

a similar vein, Catal and Diri (2009) presented a comprehensive overview of fault prediction models, with

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 111

a particular focus on the benefits of Support Vector Machines (SVM) and ensemble methods such as

Random Forest.

As a result of its capacity to model data that is both complicated and high-dimensional, neural networks

have also been utilized in the process of failure prediction. The usefulness of neural networks in forecasting

software defects was proved by Wang et al. (2010). This was especially true when neural networks were

paired with feature selection approaches to lower the dimensionality of the problem. Furthermore, ensemble

learning methods, which aggregate the predictions of numerous models in order to enhance accuracy, have

gained traction in recent years. In their discussion, Lessmann et al. (2008) highlight the significance of

Random Forest and Gradient Boosting as two important instances.

In spite of these developments, there are still obstacles to overcome in the practical implementation of

machine learning models for the prediction of software vulnerabilities. The performance of the model might

be negatively impacted by problems such as data imbalance, which occurs when the number of fault-prone

modules is much lower than the number of modules that are not fault-prone. The selection and extraction of

features are also essential components in the process of enhancing the accuracy and interpretability of a

model. The purpose of this research is to overcome these problems by doing a comprehensive analysis of

several machine learning algorithms and determining the most effective methods for fault prediction.

Methodology

Data Collection and Preprocessing

A number of software metrics that are known to correlate with software problems were included in the

dataset that was utilized in this investigation. The dataset was obtained from open-source software

repositories. The complexity of the code, the number of lines of code, the coupling between objects, the

cohesion within classes, and historical fault data are some of the metrics that fall under this category. The

dataset was subjected to extensive preprocessing in order to resolve class imbalance, handle missing values,

and normalize the data. This was accomplished through the utilization of techniques such as the Synthetic

Minority Over-sampling Technique (SMOTE).

Feature Selection

The process of selecting features is an essential stage in the construction of efficient machine learning

models. The most important elements that contribute to the prediction of software errors are identified

through this process, which results in a reduction in the dimensionality of the model and an improvement in

its functional performance. For the purpose of this investigation, we utilized methods such as Recursive

Feature Elimination (RFE) and Principal Component Analysis (PCA) in order to choose and extract the

features from the dataset that presented the greatest amount of significance.

Machine Learning Techniques

A number of research have reported the use of SFP in conjunction with machine learning (ML). An approach

to software defect prediction (CSDP) that is based on collaborative representation classification (CRC) is

provided in. This approach is based on cooperative representation classification. For the purpose of this

investigation, the authors utilized ten datasets from NASA and compared the suggested model to a number

of other models, including Naive Bayes, Neural Network, and C4.5, amongst others. According to the

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 112

findings of their investigation, the performance of the proposed model is superior to that of other prediction

models. For the purpose of determining one of the most important software metrics, a method known as the

Majority Vote-based Feature Selection method (MVFS) has been developed. When conducting their

research, they make use of four datasets from NASA in order to evaluate the effectiveness of the suggested

approach. The findings support the hypothesis that the MVFS technique has the potential to enhance the

performance of defect prediction by determining which software metrics are the most important. K. For the

purpose of predicting software problems, Sorensen clustering is utilized in it. This is accomplished by

computing clustering distance using Sorensen distance. The datasets that were necessary for this analysis

were collected from the Promise Repository of the NASA MDP (metric data program), which is accessible

via the internet. At the same time, a number of researchers utilized unsupervised learning strategies for the

purpose of software defect prediction. In order to evaluate the effectiveness of fault prediction, their research

included an analysis of a number of different K-means variations as well as k-means. It is compared to five

different PROMISE datasets. According to the authors, the performance of the K-means algorithm is

consistent across all k-variations. The article presents the findings of a study that describes the investigation

of defect prediction using a combination of qualitative and quantitative analysis. A comparison of four

different classifiers for defect prediction was presented in a study. These classifiers were Random Forest,

Naive Bayes, RPart, and SVM. During their investigations, the authors made use of both open source

datasets from NASA and commercial datasets. Bagging and genetic techniques are utilized in the

development of the system in order to address class imbalance. The implementation makes use of nine

datasets from NASA. The results of Support Vector Machine (SVM), Decision Tree (DT), Neural Network

(NN), and Statistical Classifiers are compared with each other. The results show that there is a considerable

rise in prediction performance for the majority of classifiers, with SVM performing at 89.9 percent, which

is the state of the art. Ensembles are also utilized in the investigation that was presented in [53]. In this

study, the researchers compared filter-based feature ranking approaches such as gain ratio and information.

They constructed models by employing Naive Bayes (NB), multi-layer perception (MLP), K nearest-

neighbor (KNN), support vector machine (SVM), and logistic regression (LR). During the experiment, three

datasets from NASA were utilized, and the results indicate that ensemble approaches are more effective

than individual approaches. The purpose of this article is to give a comparative discussion on software

metrics thresholds calculating methodologies to predict fault-proneness. This debate is presented in order to

predict fault-proneness in software products. The authors examine the similarities and differences between

the ROC (Receiver Operating Characteristic) curves, VARL (Value of an Acceptable Risk Level), and Alves

threshold calculation procedures, all of which are utilized in the field of medicine. For this investigation, a

total of twelve datasets from PROMISE and Eclipse are utilized. In order to improve the accuracy of the

prediction (CPDP), a novel feature subset selection and feature classification method has been created. The

purpose of this method is to investigate the effectiveness of feature selection for crossproject defect

prediction. Due to the results of their experiment, they have come to the conclusion that the CPDP feature

selection methods have the potential to improve the efficiency of software defect analysis systems. In [56],

an investigation is conducted to determine whether or not the negative binomial regression (NBR) method

is effective in forecasting the number of errors that occur in particular software modules. A comparison was

made by the authors between the performance of the logistic regression model and the performance of the

negative binomial regression model. The results of their investigation indicated that the logistic regression

model was superior to the nonlinear regression model in terms of its ability to forecast software modules

that were prone to failure. As stated in Table 1, we give the machine learning strategies that are most

frequently utilized, along with the results of those techniques. In this paragraph, we have demonstrated that

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 113

machine learning models are being examined in detail for SFP, and that we need to make use of deep

learning in order to further improve both performance and accuracy.

Deep Learning Techniques

In order to learn features for defining source code that has been used for defect prediction automatically in,

a prediction model that makes use of a tree-structured Long Short-Term Memory network (LSTM)

technique has been built. There is a direct correspondence between their model and the Abstract Syntax

Tree (AST) representation of source code. Their process is broken down into four stages, beginning with

the parsing of a source code file into a tree of the abstract syntax. Next, they apply embedding on the AST

tree by converting the label name of each AST node into a vector. Finally, they apply embedding on the

AST tree. After that, they inserted the AST embedding into a tree-based LSTM network in order to obtain

a vector representation of the entire AST. At last, a classification technique is utilized in order to make

predictions regarding issues. In order to conduct the experiment, both the PROMISE datasets and the

Samsung open-source datasets are utilized. The word embedding and LSTM approaches are both

incorporated into the structure of the defect prediction model that is proposed in. Within this model, the

process is divided into three distinct stages, the first of which is the extraction of a token from the abstract

syntax tree that is represented by the model's abstract syntax tree. The token is then transformed into a vector

once this phase of the process has been completed. The vector and its labels are utilized in the third stage,

which results in the creation of a Long Short-Term Memory storage system. By automatically learning the

semantics of the program, LSTM is able to detect mistakes in the program.

Datasets Details

In the course of our research, we make use of two distinct datasets in order to compare the efficacy of

LSTM, BiLSTM, and RBFN for fault prediction. It is important to note that the two datasets, which we

refer to as Dataset 1 and Dataset 2, are of different sizes. The first dataset has 88,672 rows, while the

second dataset has 6052 rows.

Dataset 1

The measures that Chidamber and Kemerer (CK) proposed provide the foundation for the first dataset. We

merged seventy datasets based on CK that came from a variety of sources. Additionally, the specifics of this

architecture have already been proven in and. An illustration of the smaller datasets sources that we utilized

in the production of our Dataset 1 can be found displayed in Table 2. The fact that Dataset 1 has 82 percent

of classes that are not flawed and 17 percent of classes that are flawed is an important fact to keep in mind.

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 114

Figure 1: Proposed Methodology

Table 1 The major dataset makes use of the Ck metrics.

Dataset 2

The second dataset, which is the GHPR dataset, is the one that we choose to utilize for defect prediction. As

can be seen in Table 3, the dataset that was chosen has a total of 6052 instances and contains 21 static

metrics. In the second dataset, the defect ratio is 0.5 percent, making it a balanced dataset.

Statistical analysis of datasets

When features in datasets have comparable properties of programming, it is possible for them to be

associated with one another. When the correlation value is greater than or equal to ± 0.75, we are able to

eliminate duplication. This is because it is necessary to solve the issue of duplicate measurements before

utilizing them for model training. In order to determine the Pearson correlation coefficient (r) and the

Spearman correlation coefficient (p) for the pairings that were discovered in the datasets that we selected,

we carried out the calculations indicated in Figure 2. All of the associations were determined to have a

positive correlation, however none of them were shown to be of a significant kind.

Pre-processing Phase

Among the stages that comprise our pre-processing effort are the following:

Normalization

When dealing with numerical features, normalization is utilized so that new ranges may be discovered based

on using an equation. It is carried out during the step known as pre-processing. Within the scope of our

investigation, we also utilized the standardization model. A wide variety of datasets, including MFA, CA,

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 115

and others, are included in the first dataset on the list. Because we concatenated a number of smaller datasets

in such a way that the TRUE label describes

Table 2 Dataset 2 makes use of predetermined measures.

Figure 2: Correlation

Because the FALSE label indicates that the instance in question is not flawed, we carry out a cleaning

operation on the combined dataset in order to eliminate any abnormalities that may have been there. The

procedures involved in preprocessing are depicted in Figure 3.

Label Encoding

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 116

The process of converting labels into a numeric format so that they may be read by machines is referred to

as label encoding. In this way, machine learning algorithms are able to make more informed conclusions

about

Figure 3: pre-processing Steps

this is the proper way to utilize those labels. When it comes to supervised learning, this kind of pre-

processing phase for the structured dataset is really important. For the purpose of our research, Dataset 1 is

comprised of TRUE and FALSE labels. In order to translate these categorical values into numerical values,

we make use of label encoding. At this point, there is no requirement to do label encoding because Dataset

2 already has numeric label values.

Applying Deep Learning Algorithms

At this point, we evaluate the performance by employing three different deep learning algorithms: LSTM,

BiLSTM, and RBFN. In order to conduct the experiment, we selected a large number of layers, each with

its own unique activation function and hyper parameters. After putting these settings into effect, we proceed

to repeat the stages until we achieve results that are satisfactory.

Results

The implementation of LSTM, BILSTM, and RBFN is accomplished through the application of the Keras

framework. In addition to that, the libraries Numpy, Panda, Sklearn, and keras tuner were incorporated into

the system. Specifically, the Matplotlib package is applied for the purpose of visualization, and the Jupyter

notebook is utilized as the intended environment for programming. Over two hundred tests were conducted

using a wide range of hyper-parameters, activation functions, and layers that were all different from one

another. In order to improve the findings, we conducted experiments in which the parameters of the model

were changed. Both of these experiments were carried out. Detailed information on the findings that were

gathered will be presented in this section.

LSTM Results

Long short-term memory, also known as LSTM, is a sub-type of artificial neural networks that is employed

for the purpose of identifying patterns within individual data sequences. The Long Short-Term Memory

(LSTM) architecture is made up of memory blocks that are connected to one another by means of successive

subnetworks. There are four different parts that make up LSTM.

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 117

1. Memory cell: Remembering and forgetting based on the context of the input.

2. Forget Gate(f): In order to identify which information should be removed from the LSTM memory, this

gate is frequently utilized. This is accomplished by applying a sigmoid function on the information that is

stored in the LSTM memory. Both the values of ht -1 and xt are the primary considerations that led to this

conclusion. This gate produces a value between 0 and 1 as its output, with 0 indicating that the learned value

should be completely discarded and 1 indicating that the entire value should be kept. The output of this gate

is denoted by the symbol ft. In order to arrive at this conclusion, Equation 1 was utilized.

............................(1)

Where bf is constant value and called bias

3. Input Gate(i): The amount of information that will be written to the Internal Cell State could be affected

as a result. The Sigmoid layer and the tanh layer are the two layers that make up this gate. While the Sigmoid

layer is responsible for determining which values should be updated, the tanh layer is responsible for

providing a vector of new candidate values that are sent to the LSTM memory for storage. Both Equation 2

and Equation 3 are utilized in order to compute the outputs of these two layers.

...................(2)

(3)

Equation it denotes whether the value should be updated or not and ct represents the vector of new values

that will be added into LSTM memory cell.

4. Output Gate(o): In the beginning, this gate makes use of a Sigmoid layer in order to figure out which

portion of the LSTM memory is responsible for the output. It then employs a non-linear tanh function in

order to transfer values between 1 and 1 to one another. When everything is said and done, the output of a

Sigmoid layer is multiplied by the result. The equation that represents the formulas that were utilized to

compute the output is the fourth equation.

(4)

By utilizing their decision-making capabilities, these gates enhance efficiency by determining which

information should be discarded and which new information should be added to the state of the cell. As may

be seen in Figure 4, the architecture of LSTM is presented.

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 118

Figure 4: LSTM Architecture

The LSTM and BiLSTM algorithms are broken down into their individual phases in Algorithm 1.

We used the LSTM technique to generate a variety of outcomes using Dataset 1, as shown in Table 1. These

results were produced in order to analyze the influence of the following factors: the number of epochs, the

batch size, the dropout rate, the Optimizer, the layer count, and the activation function. Table 5 displays the

results of the LSTM algorithm applied to Dataset 2.

Table 1 Effect of epochs on Dataset 1

Table 2 Effect of epochs on Dataset 2

to investigate the impact of dropout rate using LSTM algorithm.

Conclusion

The prediction of software errors is often accomplished via the use of techniques such as machine learning

and neural networks. For the purpose of this investigation, we intended to construct deep learning algorithms

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 119

for software fault prediction in order to answer two primary questions: first, how can deep learning

algorithms contribute to the improvement of performance, and second, how do different model architectural

considerations lead us to a model that is satisfactorily accurate? In order to conduct the tests, three different

deep learning algorithms—LSTM, BILSTM, and RBFN—are utilized. For the purpose of evaluating the

effectiveness of the suggested deep learning algorithms, we utilized two distinct datasets. The first dataset

is an open-source dataset that includes seventy datasets that are accessible to the general public and contain

Ck metrics. Through the Git repository, we were able to access Dataset 2, which is comprised of 21 static

measurements. Accuracy, precision, recall, and F1-score were the metrics that we utilized to evaluate

performance. BILSTM and LSTM are superior than other algorithms when compared to one another.

Through the process of cross validation, we are able to acquire the best possible results.

References

[1] Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems

with Applications, 36(4), 7346-7354. https://doi.org/10.1016/j.eswa.2008.10.027

[2] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification models for

software defect prediction: A proposed framework and novel findings. IEEE Transactions on

Software Engineering, 34(4), 485-496. https://doi.org/10.1109/TSE.2008.35

[3] Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect

predictors. IEEE Transactions on Software Engineering, 33(1), 2-13.

https://doi.org/10.1109/TSE.2007.256941

[4] Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect prediction. IEEE

Transactions on Reliability, 62(2), 434-443. https://doi.org/10.1109/TR.2013.2259203

[5] Wang, S., Zhang, Y., & Yao, X. (2010). A multi-objective approach to software fault prediction.

ACM Transactions on Software Engineering and Methodology, 19(3), 1-29.

https://doi.org/10.1145/1698750.1698751

[6] Akour, M., Alsghaier, H., Al Qasem, O., 2020. The effectiveness of using deep learning algorithms

in predicting students achievements. Indonesian Journal of Electrical Engineering and Computer

Science 19, 387–393.

[7] Al Qasem, O., Akour, M., Alenezi, M., 2020. The influence of deep learning algorithms factors in

software fault prediction. IEEE Access 8, 63945–63960.

[8] Ali, A., Gravino, C., 2021. An empirical comparison of validation methods for software prediction

models. Journal of Software: Evolution and Process 33, e2367.

[9] Ali, H., Khan, T.A., 2019. On fault localization using machine learning techniques, in: 2019

International Conference on Frontiers of Information Technology (FIT), IEEE. pp. 357–3575.

[10] Aziz, S.R., Khan, T.A., Nadeem, A., 2019. Experimental validation of inheritance metrics’ impact

on software fault prediction. IEEE Access 7, 85262–85275. URL:

https://doi.org/10.1109/ACCESS.2019.2924040,doi:10.1109/ACCESS.2019.2924040.

[11] Aziz, S.R., Khan, T.A., Nadeem, A., 2020. Efficacy of inheritance aspect in software fault prediction

- A survey paper. IEEE Access 8, 170548–170567. URL:

https://doi.org/10.1109/ACCESS.2020.3022087,doi:10.1109/ACCESS.2020.3022087.

[12] Aziz, S.R., Khan, T.A., Nadeem, A., 2021. Exclusive use and evaluation of inheritance metrics

viability in software fault prediction - an experimental study. PeerJ Comput. Sci. 7, e563. URL:

https: //doi.org/10.7717/peerj-cs.563.

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org Volume 11, Issue-3 May-June- 2024 www.ijermt.org

Copyright@ijermt.org Page 120

[13] Batool, I., Khan, T.A., 2022. Software fault prediction using data mining, machine learning and deep

learning techniques: A systematic literature review. Computers and Electrical Engineering 100.

mailto:editor@ijermt.org
http://www.ijermt.org/

