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ABSTRACT  

Within the context of the modern era of software development, it is of the utmost importance to guarantee 

the dependability and quality of software systems. In this particular field, one of the most significant issues 

is the prediction and identification of software faults, which can have a considerable impact on both the 

performance of software and the level of pleasure experienced by users. Within the scope of this research 

project, the use of machine learning techniques to the prediction of software errors is investigated with the 

objective of improving the accuracy and efficiency of fault detection procedures. In order to construct 

predictive models that are based on past software defect data, we studied a number of different machine 

learning methods. These algorithms included Decision Trees, Random Forest, Support Vector Machines 

(SVM), and Neural Networks. Multiple software metrics, such as code complexity, lines of code, and 

historical fault data, are included in the dataset that was utilized for this analysis. These metrics serve as 

predictors for prospective software flaws. The preprocessing of data, the selection of features, the training 

of models, and validation are all components of our methodology. The performance of each model was 

evaluated using cross-validation techniques, with a particular emphasis placed on metrics like as precision, 

recall, F1-score, and area under the receiver operating characteristic (ROC) curve. According to the 

findings, machine learning models, and more specifically ensemble approaches such as Random Forest, 

provide higher performance when it comes to forecasting software problems in comparison to classic 

statistical methods. Furthermore, the research emphasizes the significance of feature selection in terms of 

contributing to the enhancement of model correctness and the reduction of computing complexity. 

According to the findings, adopting techniques from machine learning into the software development 

lifecycle has the potential to dramatically improve failure prediction, which in turn can lead to software 

systems that are more dependable and robust. This research provides a platform for future work in this 

subject by demonstrating the efficacy of machine learning algorithms in software defect prediction. In 

conclusion, this research illustrates both of these things. By incorporating these predictive models, software 

developers are able to proactively identify and address potential flaws, which ultimately results in an 

improvement in software quality and a reduction in the expenses associated with maintenance. 

Keywords: software, machine learning, techniques 

Introduction 

Various industries, including healthcare, finance, transportation, and communication, have all been 

impacted by the proliferation of software systems, which have become an indispensable component of 

contemporary life. It is becoming increasingly difficult to guarantee the dependability and quality of these 

systems as their complexity and scale continue to increase. program faults, also known as defects or bugs 
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in the program, have the potential to result in substantial failures, which can result in monetary losses, 

breaches of security, and disruptions to operational business operations. Predicting software problems at an 

early stage in the development lifecycle is therefore essential for ensuring that software continues to be of 

good quality and for lowering the expenses associated with its maintenance. Traditional methods of fault 

detection frequently rely on manual code reviews and testing, which are both time-consuming and may not 

be able to identify all potential faults in an accurate manner. Machine learning approaches, on the other 

hand, provide a viable alternative by automating the process of fault prediction. These strategies make use 

of previous data in order to identify trends and generate predictions about future errors. As a result, they 

enable proactive identification and resolution of difficulties. In this work, the application of a variety of 

machine learning techniques to the prediction of software deficiencies is the primary focus. As part of our 

investigation into the construction of prediction models based on software metrics, we investigate the 

utilization of Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks. The 

purpose of this study is to determine which algorithms are the best appropriate for this purpose and to 

evaluate the efficiency of these models in properly forecasting software defects. Multiple software 

measures, such as code complexity, lines of code, and historical fault data, are included in the dataset that 

was utilized for this investigation into software. The machine learning models take these measurements as 

input characteristics and use them to make decisions. We use a methodical approach to the preprocessing of 

data, the selection of features, the training of models, and the implementation of validation. The performance 

of each model is evaluated through the use of cross-validation procedures, with a particular emphasis placed 

on important evaluation metrics such as precision, recall, F1-score, and the area under the receiver operating 

characteristic (ROC) curve. It is anticipated that the outcomes of this research will make a contribution to 

the existing body of knowledge on software fault prediction and will provide software developers with 

insights that have practical applications. Developers are able to increase defect detection, enhance software 

reliability, and reduce maintenance efforts when they incorporate predictive models that are based on 

machine learning into the software development process. The subsequent sections will consist of a review 

of the applicable literature, a description of the technique, a presentation of the experimental results, and a 

discussion of the implications of our findings. An overview of the most important contributions and some 

recommendations for potential future research areas in the field of software failure prediction through the 

application of machine learning techniques are presented as the final section of the study. 

Related Work 

The prediction of software problems has been the subject of a significant amount of research, and numerous 

approaches have been investigated in order to investigate ways to improve the accuracy and efficiency of 

fault detection. In the early phases of this research topic, traditional statistical methods such as regression 

analysis and Bayesian networks received a significant amount of attention and were utilized extensively. 

These methodologies, on the other hand, frequently suffer when confronted with the intricate and nonlinear 

interactions that are inherent in software measurements.  

Machine learning has developed as a potent technique for software fault prediction in recent years. It offers 

the capability to handle massive datasets and identify subtle patterns, making it an ideal tool for software 

fault prediction. The efficacy of machine learning algorithms in this field has been proved by a great number 

of studies. Menzies et al. (2007), for example, brought attention to the fact that machine learning models, in 

particular Decision Trees and Naive Bayes, have the capacity to accurately anticipate software problems. In 

a similar vein, Catal and Diri (2009) presented a comprehensive overview of fault prediction models, with 
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a particular focus on the benefits of Support Vector Machines (SVM) and ensemble methods such as 

Random Forest.  

As a result of its capacity to model data that is both complicated and high-dimensional, neural networks 

have also been utilized in the process of failure prediction. The usefulness of neural networks in forecasting 

software defects was proved by Wang et al. (2010). This was especially true when neural networks were 

paired with feature selection approaches to lower the dimensionality of the problem. Furthermore, ensemble 

learning methods, which aggregate the predictions of numerous models in order to enhance accuracy, have 

gained traction in recent years. In their discussion, Lessmann et al. (2008) highlight the significance of 

Random Forest and Gradient Boosting as two important instances.  

In spite of these developments, there are still obstacles to overcome in the practical implementation of 

machine learning models for the prediction of software vulnerabilities. The performance of the model might 

be negatively impacted by problems such as data imbalance, which occurs when the number of fault-prone 

modules is much lower than the number of modules that are not fault-prone. The selection and extraction of 

features are also essential components in the process of enhancing the accuracy and interpretability of a 

model. The purpose of this research is to overcome these problems by doing a comprehensive analysis of 

several machine learning algorithms and determining the most effective methods for fault prediction.  

Methodology 

Data Collection and Preprocessing 

A number of software metrics that are known to correlate with software problems were included in the 

dataset that was utilized in this investigation. The dataset was obtained from open-source software 

repositories. The complexity of the code, the number of lines of code, the coupling between objects, the 

cohesion within classes, and historical fault data are some of the metrics that fall under this category. The 

dataset was subjected to extensive preprocessing in order to resolve class imbalance, handle missing values, 

and normalize the data. This was accomplished through the utilization of techniques such as the Synthetic 

Minority Over-sampling Technique (SMOTE). 

Feature Selection 

The process of selecting features is an essential stage in the construction of efficient machine learning 

models. The most important elements that contribute to the prediction of software errors are identified 

through this process, which results in a reduction in the dimensionality of the model and an improvement in 

its functional performance. For the purpose of this investigation, we utilized methods such as Recursive 

Feature Elimination (RFE) and Principal Component Analysis (PCA) in order to choose and extract the 

features from the dataset that presented the greatest amount of significance. 

Machine Learning Techniques 

A number of research have reported the use of SFP in conjunction with machine learning (ML). An approach 

to software defect prediction (CSDP) that is based on collaborative representation classification (CRC) is 

provided in. This approach is based on cooperative representation classification. For the purpose of this 

investigation, the authors utilized ten datasets from NASA and compared the suggested model to a number 

of other models, including Naive Bayes, Neural Network, and C4.5, amongst others. According to the 
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findings of their investigation, the performance of the proposed model is superior to that of other prediction 

models. For the purpose of determining one of the most important software metrics, a method known as the 

Majority Vote-based Feature Selection method (MVFS) has been developed. When conducting their 

research, they make use of four datasets from NASA in order to evaluate the effectiveness of the suggested 

approach. The findings support the hypothesis that the MVFS technique has the potential to enhance the 

performance of defect prediction by determining which software metrics are the most important. K. For the 

purpose of predicting software problems, Sorensen clustering is utilized in it. This is accomplished by 

computing clustering distance using Sorensen distance. The datasets that were necessary for this analysis 

were collected from the Promise Repository of the NASA MDP (metric data program), which is accessible 

via the internet. At the same time, a number of researchers utilized unsupervised learning strategies for the 

purpose of software defect prediction. In order to evaluate the effectiveness of fault prediction, their research 

included an analysis of a number of different K-means variations as well as k-means. It is compared to five 

different PROMISE datasets. According to the authors, the performance of the K-means algorithm is 

consistent across all k-variations. The article presents the findings of a study that describes the investigation 

of defect prediction using a combination of qualitative and quantitative analysis. A comparison of four 

different classifiers for defect prediction was presented in a study. These classifiers were Random Forest, 

Naive Bayes, RPart, and SVM. During their investigations, the authors made use of both open source 

datasets from NASA and commercial datasets. Bagging and genetic techniques are utilized in the 

development of the system in order to address class imbalance. The implementation makes use of nine 

datasets from NASA. The results of Support Vector Machine (SVM), Decision Tree (DT), Neural Network 

(NN), and Statistical Classifiers are compared with each other. The results show that there is a considerable 

rise in prediction performance for the majority of classifiers, with SVM performing at 89.9 percent, which 

is the state of the art. Ensembles are also utilized in the investigation that was presented in [53]. In this 

study, the researchers compared filter-based feature ranking approaches such as gain ratio and information. 

They constructed models by employing Naive Bayes (NB), multi-layer perception (MLP), K nearest-

neighbor (KNN), support vector machine (SVM), and logistic regression (LR). During the experiment, three 

datasets from NASA were utilized, and the results indicate that ensemble approaches are more effective 

than individual approaches. The purpose of this article is to give a comparative discussion on software 

metrics thresholds calculating methodologies to predict fault-proneness. This debate is presented in order to 

predict fault-proneness in software products. The authors examine the similarities and differences between 

the ROC (Receiver Operating Characteristic) curves, VARL (Value of an Acceptable Risk Level), and Alves 

threshold calculation procedures, all of which are utilized in the field of medicine. For this investigation, a 

total of twelve datasets from PROMISE and Eclipse are utilized. In order to improve the accuracy of the 

prediction (CPDP), a novel feature subset selection and feature classification method has been created. The 

purpose of this method is to investigate the effectiveness of feature selection for crossproject defect 

prediction. Due to the results of their experiment, they have come to the conclusion that the CPDP feature 

selection methods have the potential to improve the efficiency of software defect analysis systems. In [56], 

an investigation is conducted to determine whether or not the negative binomial regression (NBR) method 

is effective in forecasting the number of errors that occur in particular software modules. A comparison was 

made by the authors between the performance of the logistic regression model and the performance of the 

negative binomial regression model. The results of their investigation indicated that the logistic regression 

model was superior to the nonlinear regression model in terms of its ability to forecast software modules 

that were prone to failure. As stated in Table 1, we give the machine learning strategies that are most 

frequently utilized, along with the results of those techniques. In this paragraph, we have demonstrated that 
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machine learning models are being examined in detail for SFP, and that we need to make use of deep 

learning in order to further improve both performance and accuracy. 

Deep Learning Techniques 

In order to learn features for defining source code that has been used for defect prediction automatically in, 

a prediction model that makes use of a tree-structured Long Short-Term Memory network (LSTM) 

technique has been built. There is a direct correspondence between their model and the Abstract Syntax 

Tree (AST) representation of source code. Their process is broken down into four stages, beginning with 

the parsing of a source code file into a tree of the abstract syntax. Next, they apply embedding on the AST 

tree by converting the label name of each AST node into a vector. Finally, they apply embedding on the 

AST tree. After that, they inserted the AST embedding into a tree-based LSTM network in order to obtain 

a vector representation of the entire AST. At last, a classification technique is utilized in order to make 

predictions regarding issues. In order to conduct the experiment, both the PROMISE datasets and the 

Samsung open-source datasets are utilized. The word embedding and LSTM approaches are both 

incorporated into the structure of the defect prediction model that is proposed in. Within this model, the 

process is divided into three distinct stages, the first of which is the extraction of a token from the abstract 

syntax tree that is represented by the model's abstract syntax tree. The token is then transformed into a vector 

once this phase of the process has been completed. The vector and its labels are utilized in the third stage, 

which results in the creation of a Long Short-Term Memory storage system. By automatically learning the 

semantics of the program, LSTM is able to detect mistakes in the program. 

Datasets Details 

In the course of our research, we make use of two distinct datasets in order to compare the efficacy of 

LSTM, BiLSTM, and RBFN for fault prediction. It is important to note that the two datasets, which we 

refer to as Dataset 1 and Dataset 2, are of different sizes. The first dataset has 88,672 rows, while the 

second dataset has 6052 rows. 

Dataset 1 

The measures that Chidamber and Kemerer (CK) proposed provide the foundation for the first dataset. We 

merged seventy datasets based on CK that came from a variety of sources. Additionally, the specifics of this 

architecture have already been proven in and. An illustration of the smaller datasets sources that we utilized 

in the production of our Dataset 1 can be found displayed in Table 2. The fact that Dataset 1 has 82 percent 

of classes that are not flawed and 17 percent of classes that are flawed is an important fact to keep in mind. 
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Figure 1: Proposed Methodology 

Table 1 The major dataset makes use of the Ck metrics.  

Dataset 2 

The second dataset, which is the GHPR dataset, is the one that we choose to utilize for defect prediction. As 

can be seen in Table 3, the dataset that was chosen has a total of 6052 instances and contains 21 static 

metrics. In the second dataset, the defect ratio is 0.5 percent, making it a balanced dataset. 

Statistical analysis of datasets 

When features in datasets have comparable properties of programming, it is possible for them to be 

associated with one another. When the correlation value is greater than or equal to ± 0.75, we are able to 

eliminate duplication. This is because it is necessary to solve the issue of duplicate measurements before 

utilizing them for model training. In order to determine the Pearson correlation coefficient (r) and the 

Spearman correlation coefficient (p) for the pairings that were discovered in the datasets that we selected, 

we carried out the calculations indicated in Figure 2. All of the associations were determined to have a 

positive correlation, however none of them were shown to be of a significant kind. 

Pre-processing Phase 

Among the stages that comprise our pre-processing effort are the following: 

Normalization 

When dealing with numerical features, normalization is utilized so that new ranges may be discovered based 

on using an equation. It is carried out during the step known as pre-processing. Within the scope of our 

investigation, we also utilized the standardization model. A wide variety of datasets, including MFA, CA, 
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and others, are included in the first dataset on the list. Because we concatenated a number of smaller datasets 

in such a way that the TRUE label describes 

Table 2 Dataset 2 makes use of predetermined measures.

 

 

Figure 2: Correlation 

Because the FALSE label indicates that the instance in question is not flawed, we carry out a cleaning 

operation on the combined dataset in order to eliminate any abnormalities that may have been there. The 

procedures involved in preprocessing are depicted in Figure 3. 

Label Encoding 
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The process of converting labels into a numeric format so that they may be read by machines is referred to 

as label encoding. In this way, machine learning algorithms are able to make more informed conclusions 

about 

 

Figure 3: pre-processing Steps 

this is the proper way to utilize those labels. When it comes to supervised learning, this kind of pre-

processing phase for the structured dataset is really important. For the purpose of our research, Dataset 1 is 

comprised of TRUE and FALSE labels. In order to translate these categorical values into numerical values, 

we make use of label encoding. At this point, there is no requirement to do label encoding because Dataset 

2 already has numeric label values. 

 

 

Applying Deep Learning Algorithms 

At this point, we evaluate the performance by employing three different deep learning algorithms: LSTM, 

BiLSTM, and RBFN. In order to conduct the experiment, we selected a large number of layers, each with 

its own unique activation function and hyper parameters. After putting these settings into effect, we proceed 

to repeat the stages until we achieve results that are satisfactory. 

Results 

The implementation of LSTM, BILSTM, and RBFN is accomplished through the application of the Keras 

framework. In addition to that, the libraries Numpy, Panda, Sklearn, and keras tuner were incorporated into 

the system. Specifically, the Matplotlib package is applied for the purpose of visualization, and the Jupyter 

notebook is utilized as the intended environment for programming. Over two hundred tests were conducted 

using a wide range of hyper-parameters, activation functions, and layers that were all different from one 

another. In order to improve the findings, we conducted experiments in which the parameters of the model 

were changed. Both of these experiments were carried out. Detailed information on the findings that were 

gathered will be presented in this section. 

LSTM Results 

Long short-term memory, also known as LSTM, is a sub-type of artificial neural networks that is employed 

for the purpose of identifying patterns within individual data sequences. The Long Short-Term Memory 

(LSTM) architecture is made up of memory blocks that are connected to one another by means of successive 

subnetworks. There are four different parts that make up LSTM. 
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1. Memory cell: Remembering and forgetting based on the context of the input.  

2. Forget Gate(f): In order to identify which information should be removed from the LSTM memory, this 

gate is frequently utilized. This is accomplished by applying a sigmoid function on the information that is 

stored in the LSTM memory. Both the values of ht -1 and xt are the primary considerations that led to this 

conclusion. This gate produces a value between 0 and 1 as its output, with 0 indicating that the learned value 

should be completely discarded and 1 indicating that the entire value should be kept. The output of this gate 

is denoted by the symbol ft. In order to arrive at this conclusion, Equation 1 was utilized. 

............................(1) 

Where bf is constant value and called bias 

3. Input Gate(i): The amount of information that will be written to the Internal Cell State could be affected 

as a result. The Sigmoid layer and the tanh layer are the two layers that make up this gate. While the Sigmoid 

layer is responsible for determining which values should be updated, the tanh layer is responsible for 

providing a vector of new candidate values that are sent to the LSTM memory for storage. Both Equation 2 

and Equation 3 are utilized in order to compute the outputs of these two layers. 

...................(2) 

 ...............(3) 

Equation it denotes whether the value should be updated or not and ct represents the vector of new values 

that will be added into LSTM memory cell. 

4. Output Gate(o): In the beginning, this gate makes use of a Sigmoid layer in order to figure out which 

portion of the LSTM memory is responsible for the output. It then employs a non-linear tanh function in 

order to transfer values between 1 and 1 to one another. When everything is said and done, the output of a 

Sigmoid layer is multiplied by the result. The equation that represents the formulas that were utilized to 

compute the output is the fourth equation. 

 ...................(4) 

By utilizing their decision-making capabilities, these gates enhance efficiency by determining which 

information should be discarded and which new information should be added to the state of the cell. As may 

be seen in Figure 4, the architecture of LSTM is presented. 
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Figure 4: LSTM Architecture 

The LSTM and BiLSTM algorithms are broken down into their individual phases in Algorithm 1.  

We used the LSTM technique to generate a variety of outcomes using Dataset 1, as shown in Table 1. These 

results were produced in order to analyze the influence of the following factors: the number of epochs, the 

batch size, the dropout rate, the Optimizer, the layer count, and the activation function. Table 5 displays the 

results of the LSTM algorithm applied to Dataset 2.  

Table 1 Effect of epochs on Dataset 1 

 

Table 2 Effect of epochs on Dataset 2 

 

to investigate the impact of dropout rate using LSTM algorithm. 

Conclusion  

The prediction of software errors is often accomplished via the use of techniques such as machine learning 

and neural networks. For the purpose of this investigation, we intended to construct deep learning algorithms 
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for software fault prediction in order to answer two primary questions: first, how can deep learning 

algorithms contribute to the improvement of performance, and second, how do different model architectural 

considerations lead us to a model that is satisfactorily accurate? In order to conduct the tests, three different 

deep learning algorithms—LSTM, BILSTM, and RBFN—are utilized. For the purpose of evaluating the 

effectiveness of the suggested deep learning algorithms, we utilized two distinct datasets. The first dataset 

is an open-source dataset that includes seventy datasets that are accessible to the general public and contain 

Ck metrics. Through the Git repository, we were able to access Dataset 2, which is comprised of 21 static 

measurements. Accuracy, precision, recall, and F1-score were the metrics that we utilized to evaluate 

performance. BILSTM and LSTM are superior than other algorithms when compared to one another. 

Through the process of cross validation, we are able to acquire the best possible results. 
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